

2014年全国统一高考数学试卷(理科)(新课标

适用地区: 河南 河北 山西

- 一、选择题(共12小题,每小题5分)
- 1. (5 分) 已知集合 $A=\{x|x^2-2x-3\geq 0\}$, $B=\{x|-2\leq x\leq 2\}$,则 $A\cap B=(x|x^2-2x+3)$
 - A.
- B. [-1, 2) C.
- D. [1, 2)

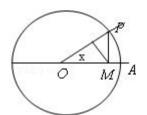
[-2, -1]

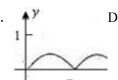
- [-1, 1]
- 2. $(5 \%) \frac{(1+i)^{-3}}{(1-i)^{-2}} = ($)
 - A. 1+i
- B. 1 i C. 1+i
- 3. (5 分) 设函数 f(x), g(x) 的定义域都为 R, 且 f(x) 是奇函数, g(x) 是偶函数,则下列结论中正确的是(A. $f(x) g(x) \not\equiv B$. $|f(x)|g(x) \not\equiv C$. f(x)|g(x)|D. |f(x)g(x)|
 - 偶函数 奇函数 是奇函数 是奇函数
- 4. (5分) 已知 F 为双曲线 $C: x^2 my^2 = 3m (m > 0)$ 的一个焦点,则点 F 到 C 的一条渐近线的距离为(
 - A. $\sqrt{3}$
- C. $\sqrt{3}$ m
- D. 3m
- 5. (5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为 ()

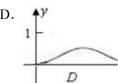
- 6. (5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过

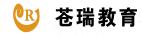
点 P 做直线 OA 的垂线, 垂足为 M, 将点 M 到直线 OP 的距离表示为 x 的函数 f(x), 则 y=f(x) 在 $[0,\pi]$ 的图象大

致为(

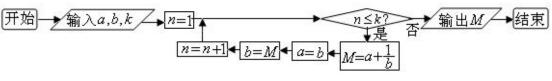








7. (5分)执行如图的程序框图,若输入的 a, b, k 分别为 1, 2, 3,则输出的 M=(



8.
$$(5\, \beta)$$
 设 $\alpha \in (0, \frac{\pi}{2})$, $\beta \in (0, \frac{\pi}{2})$, 且 $\tan \alpha = \frac{1+\sin \beta}{\cos \beta}$ 则 (

- A. $3\alpha \beta = \frac{\pi}{2}$ B. $3\alpha + \beta = \frac{\pi}{2}$ C. $2\alpha \beta = \frac{\pi}{2}$ D. $2\alpha + \beta = \frac{\pi}{2}$

9. (5 分) 不等式组
$$\begin{cases} x+y \ge 1 \\ x-2y \le 4 \end{cases}$$
 的解集记为 D,有下列四个命题:

- $p_1: \forall (x, y) \in D, x+2y \ge -2$
- $p_2: \exists (x, y) \in D, x+2y \ge 2$
- p_3 : $\forall (x, y) \in D, x+2y \le 3$
- p₄: $\exists (x, y) \in D, x+2y \le -1$

其中真命题是(

- A. p_2 , p_3
- B. p_1 , p_4
- C. p_1 , p_2
- D. p_1, p_3

10. (5分)已知抛物线 C: $y^2=8x$ 的焦点为 F,准线为 l,P 是 l 上一点,Q 是直线 PF 与 C 的一个交点,若 FP=4 FQ, 则|OF|=(

- B. 3
- D. 2

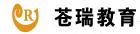
11. (5分) 已知函数 $f(x) = ax^3 - 3x^2 + 1$,若 f(x) 存在唯一的零点 x_0 ,且 $x_0 > 0$,则 a 的取值范围是(

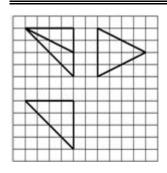
- A. $(2, +\infty)$

- B. $(1, +\infty)$ C. $(-\infty, -2)$ D. $(-\infty, -1)$

12. (5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长 的棱的长度为(

- A. $6\sqrt{2}$
- B. 6
- C. $4\sqrt{2}$
- D. 4





二、填空题(共4小题,每小题5分)

13. (5分) (x-y) (x+y) ⁸ 的展开式中 x^2y^7 的系数为______. (用数字填写答案)

14. (5分)甲、乙、丙三位同学被问到是否去过 A, B, C 三个城市时,

甲说: 我去过的城市比乙多, 但没去过 B 城市;

乙说: 我没去过 C 城市;

丙说:我们三人去过同一城市;

由此可判断乙去过的城市为_____.

15. (5分)已知 A,B,C 为圆 O 上的三点,若 $\overrightarrow{AO} = \frac{1}{2}$ ($\overrightarrow{AB} + \overrightarrow{AC}$),则 \overrightarrow{AB} 与 \overrightarrow{AC} 的夹角为______.

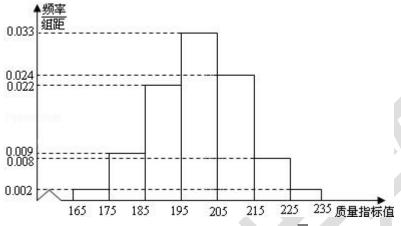
16. (5分)已知 a, b, c 分别为△ABC 三个内角 A, B, C 的对边, a=2, 且 (2+b) (sinA - sinB) = (c - b) sinC,则△ABC 面积的最大值为_____.

三、解答题

17. (12 分)已知数列 $\{a_n\}$ 的前 n 项和为 S_n , $a_1=1$, $a_n\neq 0$, $a_na_{n+1}=\lambda S_n-1$, 其中 λ 为常数.

- (I) 证明: a_{n+2} a_n=λ
- (Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.

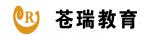
18. (12 分)从某企业生产的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:



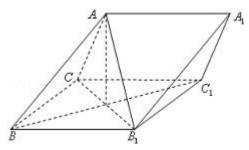
- (I) 求这 500 件产品质量指标值的样本平均数 \mathbf{x} 和样本方差 \mathbf{s}^2 (同一组中数据用该组区间的中点值作代表);
- (II) 由直方图可以认为,这种产品的质量指标值 Z 服从正态分布 N $(\mu$, $\sigma^2)$,其中 μ 近似为样本平均数 π , σ^2 近似为样本方差 s^2 .
- (i) 利用该正态分布, 求 P (187.8 < Z < 212.2);
- (ii) 某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求 EX.

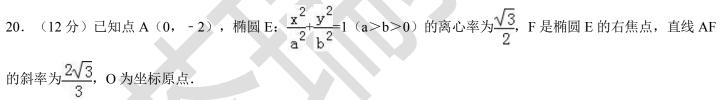
附: √150≈12.2.

若 Z - N (μ, σ^2) 则 P (μ - σ <Z<μ+ σ) =0.6826, P (μ - 2 σ <Z<μ+2 σ) =0.9544.

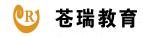


- 19. (12 分) 如图, 三棱柱 ABC A₁B₁C₁中, 侧面 BB₁C₁C 为菱形, AB \(\perp B_1 C\).
- (I)证明: AC=AB₁;
- (II) 若 $AC \perp AB_1$, $\angle CBB_1$ =60°, AB=BC, 求二面角 A A_1B_1 C_1 的余弦值.





- (I) 求 E 的方程;
- (II) 设过点 A 的动直线 1 与 E 相交于 P, Q 两点, 当 \triangle OPQ 的面积最大时, 求 1 的方程.

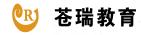


21. (12 分)设函数 $f(x) = ae^x lnx + \frac{be^{x-1}}{x}$,曲线 y=f(x) 在点(1,f(1))处得切线方程为 y=e(x-1)+2.

- (I) 求 a、b;
- (II) 证明: f(x) >1.

选修 4-4: 坐标系与参数方程

- 23. 已知曲线 C: $\frac{x^2}{4} + \frac{y^2}{9} = 1$, 直线 l: $\begin{cases} x = 2 + t \\ y = 2 2t \end{cases}$ (t 为参数)
 - (I) 写出曲线 C的参数方程,直线1的普通方程.
 - (II) 过曲线 C 上任意一点 P 作与 1 夹角为 30°的直线,交 1 于点 A,求|PA|的最大值与最小值.



选修 4-5: 不等式选讲

24. 若 a>0, b>0, 且 $\frac{1}{a}$ + $\frac{1}{b}$ - \sqrt{ab} .

- (I) 求 a³+b³ 的最小值;
- (II) 是否存在 a, b, 使得 2a+3b=6? 并说明理由.





2014年全国统一高考数学试卷(理科)(新课标 I)

参考答案与试题解析

一、选择题(共12小题,每小题5分)

1. (5 分) 已知集合 A={x|x² - 2x - 3≥0}, B={x| - 2≤x<2}, 则 A∩B= ()
A. B. [-1, 2) C. D. [1, 2)

[-2, -1]

[-1, 1]

考点: 交集及其运算.

专题: 集合.

分析: 根据集合的基本运算即可得到结论.

解答: 解: $A=\{x|x^2-2x-3\ge 0\}=\{x|x\ge 3$ 或 $x\le -1\}$, $B=\{x|-2\le x\le 2\}$,

则 $A \cap B = \{x \mid -2 \le x \le -1\}$,

故选: A

点评: 本题主要考查集合的基本运算,比较基础.

2.
$$(5 \%) \frac{(1+i)^{-3}}{(1-i)^{-2}} = ($$

A. 1+i

B. 1 - i

C. - 1+i

D - 1 - i

考点:复数代数形式的乘除运算.

专题: 数系的扩充和复数.

分析:由条件利用两个复数代数形式的乘除法,虚数单位 i 的幂运算性质,计算求得结果.

解答

解:
$$\frac{(1+i)^{-3}}{(1-i)^{-2}} = \frac{2i(1+i)}{-2i} = -(1+i) = -1-i,$$

故选: D.

点评: 本题主要考查两个复数代数形式的乘除法, 虚数单位 i 的幂运算性质, 属于基础题.

考点: 函数奇偶性的判断: 函数的定义域及其求法.

专题:函数的性质及应用.

分析: 由题意可得,|f(x)|为偶函数,|g(x)|为偶函数. 再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.

解答:解: $\cdot \cdot f(x)$ 是奇函数,g(x) 是偶函数, $\cdot \cdot |f(x)|$ 为偶函数,|g(x)| 为偶函数. 再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)| 为奇函数,

故选: C.

点评: 本题主要考查函数的奇偶性, 注意利用函数的奇偶性规律, 属于基础题.

4. (5 分) 已知 F 为双曲线 C: x^2 - my^2 =3m (m>0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为 ()

- A. $\sqrt{3}$
- B. 3
- C. √3m
- D. 3m

考点:双曲线的简单性质.

专题: 计算题; 圆锥曲线的定义、性质与方程.

分析: 双曲线方程化为标准方程, 求出焦点坐标, 一条渐近线方程, 利用点到直线的距离公式, 可得结论.

解答:

解: 双曲线 C:
$$x^2$$
 - my^2 =3m ($m>0$) 可化为 $\frac{x^2}{3m}$ - $\frac{y^2}{3}$ =1,

- ∴一个焦点为($\sqrt{3m+3}$, 0),一条渐近线方程为 $x+\sqrt{m}y=0$,
- ∴点 F 到 C 的一条渐近线的距离为 $\frac{\sqrt{3m+3}}{\sqrt{1+m}} = \sqrt{3}$.

故选: A.

点评: 本题考查双曲线的方程与性质, 考查点到直线的距离公式, 属于基础题.

5. (5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为

- A. $\frac{1}{\circ}$
- B. $\frac{3}{8}$
- C. <u>5</u>
- D. 7 8

考点: 等可能事件的概率.

专题: 计算题; 概率与统计.

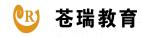
分析: 求得 4 位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况, 利用古典概型概率公式求解即可.

解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有 2^4 =16种情况,周六、周日都有同学参加公益活动,共有 2^4 -2=16-2=14种情况,

::所求概率为 $\frac{14}{16}$ = $\frac{7}{8}$

故选: D.

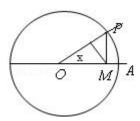
点评: 本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件 A 包含的基本事件的个数和试验中基本事件的总数.



6. (5分)如图,圆 O 的半径为 1,A 是圆上的定点,P 是圆上的动点,角 x 的始边为射线 OA,终边为射线 OP,过

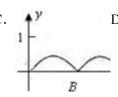
点 P 做直线 OA 的垂线, 垂足为 M, 将点 M 到直线 OP 的距离表示为 x 的函数 f(x), 则 y=f(x) 在 $[0,\pi]$ 的图象大

致为()



A. 1 P

1 2



). **A**y

考点: 抽象函数及其应用.

专题: 三角函数的图像与性质.

分析: 在直角三角形 OMP 中,求出 OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到 f(x) 的表达式,然后化简,分析周期和最值,结合图象正确选择.

解答:解:在直角三角形 OMP中, OP=1, ∠POM=x,则 OM=|cosx|,

 \therefore 点 M 到直线 OP 的距离表示为 x 的函数 $f(x) = OM|\sin x|$

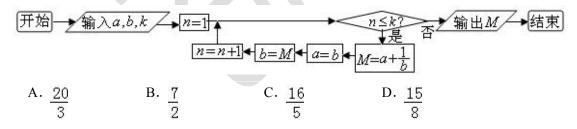
$$=|\cos x| \cdot |\sin x| = \frac{1}{2} |\sin 2x|$$

其周期为 $T=\frac{\pi}{2}$,最大值为 $\frac{1}{2}$,最小值为 0,

故选 C.

点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.

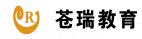
7. (5分) 执行如图的程序框图, 若输入的 a, b, k 分别为 1, 2, 3, 则输出的 M=()



考点:程序框图.

专题: 概率与统计.

分析: 根据框图的流程模拟运行程序,直到不满足条件,计算输出 M 的值.



解:由程序框图知:第一次循环 $M=1+\frac{1}{2}=\frac{3}{2}$, a=2, $b=\frac{3}{2}$, n=2;

第二次循环 $M=2+\frac{2}{3}=\frac{8}{3}$, $a=\frac{3}{2}$, $b=\frac{8}{3}$, n=3;

第三次循环 $M=\frac{3}{2}+\frac{3}{2}=\frac{15}{2}$, $a=\frac{8}{3}$, $b=\frac{15}{2}$, n=4.

不满足条件 $n \le 3$,跳出循环体,输出 $M = \frac{15}{9}$.

故选: D.

点评: 本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.

- 8. $(5\,\beta)$ 设 $\alpha\in(0,\frac{\pi}{2})$, $\beta\in(0,\frac{\pi}{2})$,且 $\tan\alpha=\frac{1+\sin\beta}{\cos\beta}$,则(
 - A. $3\alpha \beta = \frac{\pi}{2}$ B. $3\alpha + \beta = \frac{\pi}{2}$ C. $2\alpha \beta = \frac{\pi}{2}$ D. $2\alpha + \beta = \frac{\pi}{2}$

考点: 三角函数的化简求值.

专题: 三角函数的求值.

分析: 化切为弦,整理后得到 $\sin(\alpha - \beta) = \cos\alpha$,由该等式左右两边角的关系可排除选项 A,B,然后验证 C满足 等式 $\sin (\alpha - \beta) = \cos \alpha$,则答案可求.

解: 由 $tanα = \frac{1+sinβ}{cosβ}$, 得:

 $\frac{\sin\alpha}{\cos\alpha} = \frac{1+\sin\beta}{\cos\beta}$

 $\mathbb{II} \sin \alpha \cos \beta = \cos \alpha \sin \beta + \cos \alpha$,

 $\sin (\alpha - \beta) = \cos \alpha$.

由等式右边为单角α,左边为角α与β的差,可知β与2α有关.

排除选项 A, B后验证 C,

当 $2\alpha - \beta = \frac{\pi}{2}$ 时, $\sin (\alpha - \beta) = \sin (\frac{\pi}{2} - \alpha) = \cos \alpha$ 成立.

故选: C.

点评: 本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.

9. (5分) 不等式组 $\begin{cases} x+y \ge 1 \\ x-2y \le 4 \end{cases}$ 的解集记为 D,有下列四个命题:

 $p_1: \forall (x, y) \in D, x+2y \ge -2$

 $p_2: \exists (x, y) \in D, x+2y \ge 2$

 p_3 : $\forall (x, y) \in D, x+2y \le 3$

 $p_4: \exists (x, y) \in D, x+2y \le -1$

其中真命题是()

A. p_2 , p_3

B. p_1, p_4 C. p_1, p_2 D. p_1, p_3

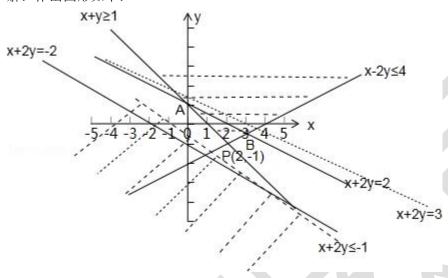
考点: 命题的真假判断与应用.

专题:不等式的解法及应用.

分析:

的表示的区域 D, 对四个选项逐一分析即可.

解答:解:作出图形如下:



由图知,区域 D 为直线 x+y=1 与 x - 2y=4 相交的上部角型区域,

显然,区域 D 在 x+2y≥ - 2 区域的上方,故 A: ∀ (x, y) ∈D, x+2y≥ - 2 成立;

在直线 x+2y=2 的右上方区域,: $\exists (x, y) \in D$, $x+2y\geq 2$, 故 p_2 : $\exists (x, y) \in D$, $x+2y\geq 2$ 正确;

由图知, p_3 : ∀ $(x, y) \in D$, $x+2y \le 3$ 错误;

x+2y≤-1 的区域(左下方的虚线区域)恒在区域 D 下方,故 p_4 : ∃(x, y) \in D,x+2y≤-1 错误;

综上所述, p1、p2 正确;

故选: C.

点评: 本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.

10. (5分)已知抛物线 C: $y^2=8x$ 的焦点为 F, 准线为 I, P 是 I 上一点,Q 是直线 PF 与 C 的一个交点,若 FP=4 FQ, 则|QF|= ()

电话: 0311-86251056 www.cangruiedu.com

B. 3

C. $\frac{5}{2}$

D. 2

考点: 抛物线的简单性质.

专题: 计算题; 圆锥曲线的定义、性质与方程.

分析: 求得直线 PF 的方程,与 $y^2=8x$ 联立可得 x=1,利用|QF|=d 可求.

解答:解:设Q到1的距离为d,则QF|=d,

- ∵FP=4FQ,
- $\therefore |PQ|=3d$,
- ∴直线 PF 的斜率为 $2\sqrt{2}$,
- :F(2, 0),
- ∴直线 PF 的方程为 y= $2\sqrt{2}$ (x 2),

与 y²=8x 联立可得 x=1,

 $\therefore |QF| = d = 1 + 2 = 3$,

故选: B.

点评: 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.

11. (5分) 已知函数 $f(x) = ax^3 - 3x^2 + 1$,若 f(x) 存在唯一的零点 x_0 ,且 $x_0 > 0$,则 a 的取值范围是(

A. $(2, +\infty)$

- B. $(1, +\infty)$ C. $(-\infty, -2)$ D. $(-\infty, -1)$

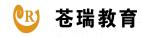
考点: 函数在某点取得极值的条件; 函数的零点.

专题:导数的综合应用.

分析: 分类讨论: 当 $a \ge 0$ 时,容易判断出不符合题意;当 a < 0 时,由于而 f(0) = 1 > 0, $x \to +\infty$ 时, $f(x) \to -\infty$,

可知: 存在 $x_0>0$, 使得 $f(x_0)=0$, 要使满足条件 f(x) 存在唯一的零点 x_0 , 且 $x_0>0$, 则必须极小值 $f(\frac{2}{x_0})$

>0,解出即可.



解答:

解: 当 a=0 时, $f(x)=-3x^2+1=0$,解得 $x=\pm\frac{\sqrt{3}}{3}$,函数 f(x) 有两个零点,不符合题意,应舍去;

当 a>0 时,令 $f'(x)=3ax^2-6x=3ax$ $\left(x-\frac{2}{a}\right)=0$,解得 x=0 或 $x=\frac{2}{a}>0$,列表如下:

Х	$(-\infty, 0)$	0	$(0, \frac{2}{a})$	2 a	$(\frac{2}{a}, +\infty)$
f' (x)	+	0	_	0	+
f (x)	单调递增	极大值	单调递减	极小值	单调递增

 $x \to +\infty$, $f(x) \to +\infty$, 而 f(0) = 1 > 0, ∴存在 x < 0, 使得 f(x) = 0, 不符合条件: f(x) 存在唯一的零点 x_0 , 且 $x_0 > 0$, 应舍去.

当 a < 0 时,f'(x)=3ax²-6x=3ax ($x-\frac{2}{a}$)=0,解得 x=0 或 x= $\frac{2}{a}$ <0,列表如下:

X	$(-\infty, \frac{2}{a})$	<u>2</u> a	$(\frac{2}{a}, 0)$	0	(0, +∞)
f' (x)	-	0	+	0	-
f (x)	单调递减	极小值	单调递增	极大值	单调递减

而 f (0) =1>0, $x\to +\infty$ 时, f (x) $\to -\infty$, ∴存在 $x_0>0$, 使得 f (x_0) =0,

∵f (x) 存在唯一的零点 x₀,且 x₀>0,∴极小值 f $(\frac{2}{a})$ = a $(\frac{2}{a})$ ³ - 3 $(\frac{2}{a})$ ²+1>0,化为 a²>4,

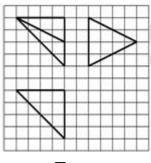
 \therefore a<0, \therefore a<-2.

综上可知: a 的取值范围是 $(-\infty, -2)$.

故选: C.

点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力, 属于难题.

12. (5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()



A. $6\sqrt{2}$

B. 6

C. $4\sqrt{2}$

D. 4

考点: 由三视图求面积、体积.

专题:空间位置关系与距离.

分析: 画出图形,结合三视图的数据求出棱长,推出结果即可.

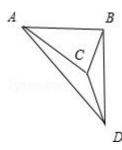


解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,

:
$$BC = CD = \sqrt{2^2 + 4^2} = 2\sqrt{5}$$
. $AC = \sqrt{4^2 + (2\sqrt{5})^2} = 6$, $AD = 4\sqrt{2}$,

显然 AC 最长. 长为 6.

故选: B.



点评: 本题考查三视图求解几何体的棱长, 考查计算能力.

二、填空题(共4小题,每小题5分)

13. (5 分) (x - y) (x+y) ⁸ 的展开式中 x^2y^7 的系数为<u>-20</u>. (用数字填写答案)

考点: 二项式定理的应用; 二项式系数的性质.

专题: 二项式定理.

分析: 由题意依次求出 $(x+y)^8 + xy^7, x^2y^6$, 项的系数,求和即可.

解答: 解: $(x+y)^8$ 的展开式中,含 xy^7 的系数是: $C_8^7=8$.

含 x^2y^6 的系数是 $C_8^6=28$,

∴ (x-y) (x+y) ⁸ 的展开式中 x^2y^7 的系数为: 8 - 28= - 20.

故答案为: - 20

点评: 本题考查二项式定理系数的性质, 二项式定理的应用, 考查计算能力.

14. (5分)甲、乙、丙三位同学被问到是否去过 A, B, C 三个城市时,

甲说: 我去过的城市比乙多, 但没去过 B 城市;

乙说: 我没去过 C 城市;

丙说: 我们三人去过同一城市;

由此可判断乙去过的城市为 A .

考点: 进行简单的合情推理.

专题: 推理和证明.

分析:可先由乙推出,可能去过 A 城市或 B 城市,再由甲推出只能是 A,B 中的一个,再由丙即可推出结论.

解答:解:由乙说:我没去过 C 城市,则乙可能去过 A 城市或 B 城市,

但甲说: 我去过的城市比乙多,但没去过 B 城市,则乙只能是去过 A,B 中的任一个,

再由丙说:我们三人去过同一城市,

则由此可判断乙去过的城市为 A.

故答案为: A.

点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.

15. (5分) 已知 A,B,C 为圆 O 上的三点,若 $\overrightarrow{AO} = \frac{1}{2}$ ($\overrightarrow{AB} + \overrightarrow{AC}$),则 \overrightarrow{AB} 与 \overrightarrow{AC} 的夹角为<u>90°</u>.



考点: 数量积表示两个向量的夹角.

专题: 平面向量及应用.

分析: 根据向量之间的关系,利用圆直径的性质,即可得到结论.

 $\frac{\text{解答:}}{\text{R:}}$ 解: 在圆中若 $\overrightarrow{AO} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC})$,

即 2 AO= AB+ AC,

即 AB+ AC的和向量是过 A, O 的直径,

则以 AB, AC 为临边的四边形是矩形,

则 $\overrightarrow{AB} \perp \overrightarrow{AC}$,

即 AB与 AC的夹角为 90°,

故答案为:90°

点评: 本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.

16. (5分)已知 a, b, c 分别为 \triangle ABC 三个内角 A, B, C 的对边,a=2,且(2+b)(sinA - sinB)=(c - b)sinC,则 \triangle ABC 面积的最大值为 $\sqrt{3}$.

考点: 正弦定理.

专题:解三角形.

分析: 由条件利用正弦定理可得 b^2+c^2 - bc=4. 再利用基本不等式可得 $bc\le 4$,当且仅当 b=c=2 时,取等号,此时, $\triangle ABC$ 为等边三角形,从而求得它的面积 $\frac{1}{9}bc \cdot sinA$ 的值.

解答: 解: $\triangle ABC$ 中,:a=2,且(2+b)(sinA - sinB)=(c - b)sinC,

∴利用正弦定理可得 $4 - b^2 = (c - b) c$,即 $b^2 + c^2 - bc = 4$.

再利用基本不等式可得 4≥2bc - bc=bc, ∴bc≤4, 当且仅当 b=c=2 时, 取等号,

此时, $\triangle ABC$ 为等边三角形,它的面积为 $\frac{1}{2}bc \cdot sin A = \frac{1}{2} \times 2 \times 2 \times \frac{\sqrt{3}}{2} \sqrt{3}$

故答案为: √3.

点评: 本题主要考查正弦定理的应用,基本不等式,属于中档题.

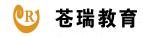
三、解答题

17. (12 分)已知数列 $\{a_n\}$ 的前 n 项和为 S_n , a_1 =1, $a_n \neq 0$, $a_n a_{n+1} = \lambda S_n$ - 1,其中 λ 为常数.

- (I) 证明: a_{n+2} a_n=λ
- (Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由.

考点: 数列递推式; 等差关系的确定.

专题: 等差数列与等比数列.



- 分析: (I) 利用 $a_n a_{n+1} = \lambda S_n 1$, $a_{n+1} a_{n+2} = \lambda S_{n+1} 1$, 相减即可得出;
 - (II) 对 λ 分类讨论: λ =0 直接验证即可; λ \neq 0,假设存在 λ ,使得 $\{a_n\}$ 为等差数列,设公差为 d. 可得 λ = a_{n+2}

$$-a_{n} = (a_{n+2} - a_{n+1}) + (a_{n+1} - a_{n}) = 2d, \quad d = \frac{\lambda}{2}. \quad \text{得到} \lambda S_{n} = \frac{\lambda^{2}}{4} n^{2} + \left(\lambda - \frac{\lambda^{2}}{4}\right) n + 2 - \frac{\lambda}{2}, \quad \text{根据} \{a_{n}\} \text{ 为等差}$$

数列的充要条件是 $\begin{cases} \lambda \neq 0 \\ 2 - \frac{\lambda}{2} = 0 \end{cases}, \quad \text{解得} \lambda 即 可.$

解答: (I) 证明: $: a_n a_{n+1} = \lambda S_n - 1$, $a_{n+1} a_{n+2} = \lambda S_{n+1} - 1$,

- $\therefore a_{n+1} (a_{n+2} a_n) = \lambda a_{n+1}$
- $a_{n+1}\neq 0$,
- $a_{n+2} a_n = \lambda$.

(II)解:①当 $\lambda=0$ 时, $a_na_{n+1}=-1$,假设 $\{a_n\}$ 为等差数列,设公差为 d.

则 a_{n+2} - a_n =0, \therefore 2d=0, 解得 d=0,

- $a_n=a_{n+1}=1$,
- $::1^{2}=-1$,矛盾,因此 $\lambda=0$ 时 $\{a_{n}\}$ 不为等差数列.
- ②当λ≠0 时,假设存在λ,使得{an}为等差数列,设公差为 d.

 $\text{In} a_{n+2} - a_n = (a_{n+2} - a_{n+1}) + (a_{n+1} - a_n) = 2d,$

$$\therefore d = \frac{\lambda}{2}$$

$$a_n = 1 + \frac{\lambda (n-1)}{2}, a_{n+1} = 1 + \frac{\lambda n}{2}$$

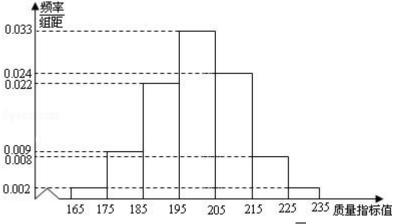
根据 $\{a_n\}$ 为等差数列的充要条件是 $\begin{cases} \lambda \neq 0 \\ 2 - \frac{\lambda}{2} = 0 \end{cases}$,解得 $\lambda = 4$.

此时可得 $S_n = n^2$, $a_n = 2n - 1$.

因此存在λ=4, 使得{a_n}为等差数列.

点评:本题考查了递推式的意义、等差数列的通项公式及其前 n 项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.

18. (12 分)从某企业生产的某种产品中抽取 500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:



(I) 求这 500 件产品质量指标值的样本平均数 \mathbf{x} 和样本方差 \mathbf{s}^2 (同一组中数据用该组区间的中点值作代表);

电话: 0311-86251056 www.cangruiedu.com

- (II) 由直方图可以认为,这种产品的质量指标值 Z 服从正态分布 N $(\mu$, σ^2),其中 μ 近似为样本平均数 \mathbf{x} , σ^2 近似为样本方差 \mathbf{s}^2 .
- (i) 利用该正态分布, 求 P(187.8 < Z < 212.2);
- (ii) 某用户从该企业购买了 100 件这种产品,记 X 表示这 100 件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求 EX.

附: √150≈12.2.

若 Z - N (μ , σ^2) 则 P (μ - σ <Z< μ + σ) =0.6826, P (μ - 2 σ <Z< μ +2 σ) =0.9544.

考点: 正态分布曲线的特点及曲线所表示的意义; 离散型随机变量的期望与方差.

专题: 计算题; 概率与统计.

分析: (I)运用离散型随机变量的期望和方差公式,即可求出;

- (Ⅱ) (i) 由(Ⅰ) 知 Z~N(200, 150), 从而求出 P(187.8<Z<212.2), 注意运用所给数据;
- (ii) 由 (i) 知 X~B (100, 0.6826), 运用 EX=np 即可求得.

解答:解:(I)抽取产品的质量指标值的样本平均数 \mathbf{x} 和样本方差 \mathbf{s}^2 分别为:

 $x=170\times0.02+180\times0.09+190\times0.22+200\times0.33+210\times0.24+220\times0.08+230\times0.02=200$,

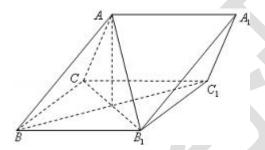
 $s^{2} = (-30)^{2} \times 0.02 + (-20)^{2} \times 0.09 + (-10)^{2} \times 0.22 + 0 \times 0.33 + 10^{2} \times 0.24 + 20^{2} \times 0.08 + 30^{2} \times 0.02 = 150.$

- (Ⅱ)(i)由(Ⅰ)知Z~N(200, 150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826;
- (ii) 由(i) 知一件产品的质量指标值位于区间(187.8, 212.2)的概率为0.6826,

依题意知 X~B(100, 0.6826), 所以 EX=100×0.6826=68.26.

点评: 本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.

- 19. (12 分) 如图, 三棱柱 ABC A₁B₁C₁ 中, 侧面 BB₁C₁C 为菱形, AB \(\) B₁C.
- (I)证明: AC=AB1:
- (II) 若 AC ⊥ AB₁, ∠CBB₁=60°, AB=BC, 求二面角 A A₁B₁ C₁的余弦值.



考点: 用空间向量求平面间的夹角: 空间向量的夹角与距离求解公式.

专题:空间向量及应用.

分析: (1)连结 BC₁,交 B₁C 于点 O,连结 AO,可证 B₁C⊥平面 ABO,可得 B₁C⊥AO,B₁0=CO,进而可得 AC=AB₁;

(2) 以 O 为坐标原点, \overrightarrow{OB} 的方向为 x 轴的正方向, $|\overrightarrow{OB}|$ 为单位长度, $|\overrightarrow{OB}|$ 0 的方向为 $|\overrightarrow{OB}|$ 0 的方向为 $|\overrightarrow{OB}|$ 0 的方向为 $|\overrightarrow{OB}|$ 0 的方向为 $|\overrightarrow{OB}|$ 1 的方向为 $|\overrightarrow{OB}|$ 2 种的正方向, $|\overrightarrow{OB}|$ 3 的方向为 $|\overrightarrow{OB}|$ 3 的方向为 $|\overrightarrow{OB}|$ 3 的方向为 $|\overrightarrow{OB}|$ 4 的方向为 $|\overrightarrow{OB}|$ 5 的为 $|\overrightarrow{$

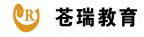
向为 z 轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.

解答: 解: (1) 连结 BC₁, 交 B₁C 于点 O, 连结 AO,

:侧面 BB₁C₁C 为菱形,

∴BC₁ ⊥B₁C, 且 O 为 BC₁ 和 B₁C 的中点,

又∵AB⊥B₁C, ∴B₁C⊥平面 ABO,



∵AO⊂平面 ABO, ∴B₁C⊥AO,

∇ B₁0=CO, ∴ AC=AB₁,

(2) ∵AC⊥AB₁, 且 O 为 B₁C 的中点, ∴AO=CO,

 \mathbb{X} : AB=BC, $ABOA \cong \triangle BOC$, $ADA \perp OB$,

∴OA, OB, OB₁ 两两垂直,

以O为坐标原点,OB的方向为x轴的正方向,OB)为单位长度,

 \overline{OB}_1 的方向为 y 轴的正方向, \overline{OA} 的方向为 z 轴的正方向建立空间直角坐标系,

∵∠CBB₁=60°, ∴△CBB₁ 为正三角形, 又 AB=BC,

∴A (0, 0,
$$\frac{\sqrt{3}}{3}$$
), B (1, 0, 0,), B₁ (0, $\frac{\sqrt{3}}{3}$, 0), C (0, $-\frac{\sqrt{3}}{3}$, 0)

$$\therefore \overrightarrow{AB_1} = (0, \frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{3}), \overrightarrow{A_1B_1} = \overrightarrow{AB} = (1, 0, -\frac{\sqrt{3}}{3}), \overrightarrow{B_1C_1} = \overrightarrow{BC} = (-1, -\frac{\sqrt{3}}{3}, 0), \overrightarrow{AB_1C_1} = \overrightarrow{AB} = (-1, -\frac{\sqrt{3}}{3}, 0)$$

设向量 $\mathbf{n}=(\mathbf{x},\mathbf{y},\mathbf{z})$ 是平面 $\mathbf{A}\mathbf{A}_1\mathbf{B}_1$ 的法向量,

则
$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{AB_1} = \frac{\sqrt{3}}{3} y - \frac{\sqrt{3}}{3} z = 0 \\ \overrightarrow{n} \cdot \overrightarrow{A_1B_1} = x - \frac{\sqrt{3}}{3} z = 0 \end{cases}, \ \overrightarrow{\text{可取 n=}} \ (1, \sqrt{3}, \sqrt{3}) \ ,$$

同理可得平面 $A_1B_1C_1$ 的一个法向量 π = $(1, -\sqrt{3}, \sqrt{3})$

$$\therefore \cos < \overrightarrow{\pi}, \overrightarrow{n} > = \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}| |\overrightarrow{n}|} = \frac{1}{7},$$

∴二面角 A - A₁B₁ - C₁ 的余弦值为 $\frac{1}{7}$

点评: 本题考查空间向量法解决立体几何问题, 建立坐标系是解决问题的关键, 属中档题.

20. (12 分)已知点 A(0, - 2),椭圆 E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a>b>0)的离心率为 $\frac{\sqrt{3}}{2}$,F 是椭圆 E 的右焦点,直线 AF

的斜率为 $\frac{2\sqrt{3}}{3}$, O为坐标原点.

- (I) 求 E 的方程;
- (II) 设过点 A 的动直线 1 = 1 日 1

考点: 直线与圆锥曲线的关系; 椭圆的标准方程.

专题: 圆锥曲线的定义、性质与方程.

分析: (I) 设 F (c, 0) ,利用直线的斜率公式可得 $\frac{2}{c} = \frac{2\sqrt{3}}{3}$,可得 c. 又 $\frac{c}{a} = \frac{\sqrt{3}}{2}$, $b^2 = a^2 - c^2$,即可解得 a,b;

(II)设 $P(x_1, y_1)$, $Q(x_2, y_2)$. 由题意可设直线 I 的方程为: y=kx-2. 与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出 $S_{\triangle OPQ}$. 通过换元再

利用基本不等式的性质即可得出.

解答:

解: (I)设F(c, 0), :直线 AF 的斜率为
$$\frac{2\sqrt{3}}{3}$$

$$\therefore \frac{2}{c} = \frac{2\sqrt{3}}{3}$$
, 解得 $c = \sqrt{3}$.

又
$$\frac{c}{a} = \frac{\sqrt{3}}{2}$$
, $b^2 = a^2 - c^2$, 解得 $a = 2$, $b = 1$.

∴椭圆 E 的方程为
$$\frac{x^2}{4}$$
+ y^2 =1;

(Ⅱ) 设
$$P(x_1, y_1)$$
, $Q(x_2, y_2)$.

由题意可设直线1的方程为: y=kx - 2.

联立
$$\begin{cases} \mathbf{y} = \mathbf{k} \mathbf{x} - 2 \\ \mathbf{x}^2 + 4 \mathbf{y}^2 = 4 \end{cases},$$

化为
$$(1+4k^2)$$
 $x^2-16kx+12=0$,当△=16 $(4k^2-3)>0$ 时,即 $k^2>\frac{3}{4}$ 时,

$$x_1 + x_2 = \frac{16k}{1+4k^2}$$
, $x_1 x_2 = \frac{12}{1+4k^2}$.

$$\therefore |PQ| = \sqrt{(1+k^2) [(x_1+x_2)^2 - 4x_1x_2]}$$

$$= \sqrt{(1+k^2) \left[\left(\frac{16k}{1+4k^2} \right)^2 - \frac{48}{1+4k^2} \right]}$$

$$=\frac{4\sqrt{1+k^2}\sqrt{4k^2-3}}{4k^2+1},$$

点 O 到直线 I 的距离
$$d=\frac{2}{\sqrt{1+k^2}}$$
.

$$\therefore S_{\triangle OPQ} = \frac{1}{2} d \cdot |PQ| = \frac{4\sqrt{4k^2 - 3}}{4k^2 + 1},$$

设
$$\sqrt{4k^2-3}=t>0$$
,则 $4k^2=t^2+3$,

$$\therefore$$
 $S_{\triangle OPQ} = \frac{4t}{t^2+4} - \frac{4}{t+\frac{4}{t}} \le \frac{4}{2\sqrt{4}} = 1$,当且仅当 $t=2$,即 $\sqrt{4k^2-3} = 2$,解得 $k=\pm \frac{\sqrt{7}}{2}$ 时取等号.

满足
$$\triangle > 0$$
, $\therefore \triangle OPQ$ 的面积最大时直线 1 的方程为: $y=\pm \frac{\sqrt{7}}{2}x-2$.

点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.

21. (12 分)设函数 $f(x) = ae^{x} lnx + \frac{be^{x-1}}{x}$,曲线 y=f(x) 在点(1,f(1))处得切线方程为 y=e(x-1)+2. (I)求 a、b:

(II)证明: f(x)>1.

考点: 导数在最大值、最小值问题中的应用; 利用导数研究曲线上某点切线方程.

专题: 综合题; 导数的综合应用.

分析: (I) 求出定义域,导数 f'(x),根据题意有 f(1)=2, f'(1)=e,解出即可;

(II) 由(I)知,
$$f(x) > 1$$
 等价于 $x \ln x > xe^{-x} - \frac{2}{x}$,设函数 $g(x) = x \ln x$,函数 $h(x) = xe^{-x} - \frac{2}{x}$,

只需证明 $g(x)_{min} > h(x)_{max}$,利用导数可分别求得 $g(x)_{min}$, $h(x)_{max}$;

解答: 解: (I) 函数 f(x) 的定义域为(0, $+\infty$),

$$f'(x) = ae^{x}lnx + \frac{a}{x} \cdot e^{x} - \frac{b}{x^{2}} \cdot e^{x-1} + \frac{b}{x} \cdot e^{x-1},$$

由题意可得 f (1) =2, f'(1) =e,

故 a=1, b=2;

(II)
$$\pm$$
 (I) \pm (X) $\pm e^{x \ln x + \frac{2}{x} \cdot e^{x-1}}$,

从而 f(x) > 1 等价于 $x \ln x > xe^{-x} - \frac{2}{e}$,设函数 $g(x) = x \ln x$,则 $g'(x) = 1 + \ln x$,

∴当 x∈ (0,
$$\frac{1}{e}$$
) 时, g'(x) <0; 当 x∈ ($\frac{1}{e}$, +∞) 时, g'(x) >0.

故 g (x) 在 $(0, \frac{1}{e})$ 上单调递减,在 $(\frac{1}{e}, +\infty)$ 上单调递增,从而 g (x) 在 $(0, +\infty)$ 上的最小值为 g

$$(\frac{1}{e}) = -\frac{1}{e}.$$

设函数
$$h(x) = xe^{-x} - \frac{2}{x}$$
, 则 $h'(x) = e^{-x} (1-x)$.

∴当x∈ (0, 1) 时,h'(x) > 0;当x∈ (1, +∞) 时,h'(x) < 0,

故 h (x) 在 (0, 1) 上单调递增,在 (1, +∞) 上单调递减,

从而 h(x) 在 $(0, +\infty)$ 上的最大值为 $h(1) = -\frac{1}{6}$.

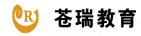
综上, 当x>0时, g(x)>h(x), 即f(x)>1.

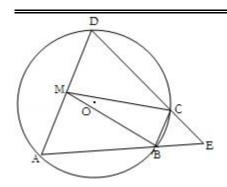
点评: 本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.

四、选做题(22-24 题任选一题作答,如果多做,则按所做的第一题计分)

选修 4-1: 集合证明选讲

- 22. (10 分) 如图,四边形 ABCD 是 \odot O 的内接四边形,AB 的延长线与 DC 的延长线交于点 E,且 CB=CE.
- (I) 证明: ∠D=∠E;
- (II) 设 AD 不是⊙O 的直径,AD 的中点为 M,且 MB=MC,证明:△ADE 为等边三角形.





考点: 与圆有关的比例线段.

专题: 选作题; 几何证明.

分析: (I) 利用四边形 ABCD 是 \odot O 的内接四边形,可得 \angle D= \angle CBE,由 CB=CE,可得 \angle E= \angle CBE,即可证明: \angle D= \angle E;

(II)设 BC 的中点为 N, 连接 MN, 证明 AD // BC, 可得 \angle A= \angle CBE, 进而可得 \angle A= \angle E, 即可证明 \triangle ADE 为等边三角形.

解答:证明:(I): 四边形 ABCD 是 \odot O 的内接四边形,

∴∠D=∠CBE,

∵CB=CE,

∴∠E=∠CBE,

 $\therefore \angle D = \angle E$;

(II)设BC的中点为N,连接MN,则由MB=MC知MNLBC,

∴O 在直线 MN 上,

∵AD 不是⊙O 的直径, AD 的中点为 M,

 $:: OM \perp AD$,

∴AD//BC,

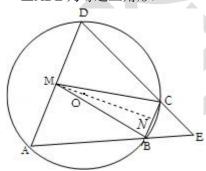
∴∠A=∠CBE,

∵∠CBE=∠E,

 $\therefore \angle A = \angle E$,

由(I)知, ∠D=∠E,

∴△ADE 为等边三角形.



点评: 本题考查圆的内接四边形性质, 考查学生分析解决问题的能力, 属于中档题.

选修 4-4: 坐标系与参数方程

23. 已知曲线 C: $\frac{x^2}{4} + \frac{y^2}{9} = 1$, 直线 1: $\begin{cases} x = 2 + t \\ y = 2 - 2t \end{cases}$ (t 为参数)

(I) 写出曲线 C的参数方程,直线 I的普通方程.

(II) 过曲线 C 上任意一点 P 作与 I 夹角为 30°的直线,交 I 于点 A,求|PA|的最大值与最小值.

电话: 0311-86251056 www.cangruiedu.com

地址:建设大街与范西路交口众鑫大厦1718室

考点:参数方程化成普通方程;直线与圆锥曲线的关系.

专题: 坐标系和参数方程.

分析: (I) 联想三角函数的平方关系可取 $x=2\cos\theta$ 、 $y=3\sin\theta$ 得曲线 C 的参数方程,直接消掉参数 t 得直线 I 的普通方程;

(II) 设曲线 C 上任意一点 P (2 $\cos\theta$, 3 $\sin\theta$). 由点到直线的距离公式得到 P 到直线 I 的距离,除以 $\sin 30$ °进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.

解答:

解: (I) 对于曲线 C:
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, 可令 $x = 2\cos\theta$ 、 $y = 3\sin\theta$,

故曲线 C 的参数方程为 $\begin{cases} x=2\cos\theta \\ y=3\sin\theta \end{cases}$, (θ 为参数).

由①得: t=x - 2, 代入②并整理得: 2x+y - 6=0;

(II) 设曲线 C 上任意一点 P (2cosθ, 3sinθ).

P 到直线 l 的距离为
$$d=\frac{\sqrt{5}}{5}|4\cos\theta+3\sin\theta-6|$$
.

则
$$|PA| = \frac{d}{\sin 30^{\circ}} = \frac{2\sqrt{5}}{5} |5\sin(\theta + \alpha) - 6|$$
,其中 α 为锐角.

当 sin
$$(\theta+\alpha)$$
 = -1 时,|PA|取得最大值,最大值为 $\frac{22\sqrt{5}}{5}$

当 sin
$$(\theta+\alpha)$$
 =1 时, $|PA|$ 取得最小值,最小值为 $\frac{2\sqrt{5}}{5}$.

点评: 本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.

选修 4-5: 不等式选讲

24. 若 a>0, b>0, 且
$$\frac{1}{a}$$
+ $\frac{1}{b}$ = \sqrt{ab} .

- (I) 求 a³+b³ 的最小值;
- (II) 是否存在 a, b, 使得 2a+3b=6? 并说明理由.

考点: 基本不等式; 基本不等式在最值问题中的应用.

专题:不等式的解法及应用.

分析: (I) 由条件利用基本不等式求得 $ab \ge 4$,再利用基本不等式求得 $a^3 + b^3$ 的最小值.

(II) 根据 ab≥4 及基本不等式求的 2a+3b>8,从而可得不存在 a, b,使得 2a+3b=6.

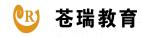
解答: 解: (I) : a>0, b>0, 且 $\frac{1}{a}+\frac{1}{b}=\sqrt{ab}$,

$$\therefore \sqrt{ab} = \frac{1}{a} + \frac{1}{b} \ge 2\sqrt{\frac{1}{ab}},$$

∴ab>2,

当且仅当 $a=b=\sqrt{2}$ 时取等号.

 $: a^3 + b^3 \ge 2\sqrt{(ab)^{-3}} \ge 2\sqrt{2^3} = 4\sqrt{2}$,当且仅当 $a = b = \sqrt{2}$ 时取等号,



 $∴ a^3 + b^3$ 的最小值为 $4\sqrt{2}$.

(Ⅱ)由(1)可知, 2a+3b≥2√2a•3b=2√6ab≥4√3>6, 故不存在 a, b, 使得 2a+3b=6 成立.

点评: 本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.

